Talk 2: Experimental Work Oxford 11/01

R. B. Palmer

- Pion Production
- BNL Target Exp
- CERN Target Exp
- CERN RF
- CERN/Cornell SC RF
- Fermi RF
- Absorber
- Muscat
- MICE

BNL Pion Prod. Exp. (E910)

p: 8, 12, & 17 GeV π : 0 to 45 deg.

MPS MAGNET ST V2 **BULLSEYE** TPC S13.9m 6.8m In(dE/dx) 2.5 1.5 0.5 -0.5

p[GeV/c]

Recent Analysis:

CERN HARP Pion Production Experiment

π + and π - production:

- for various target materials and target lengths
 - population of target material and geometry
- for proton energies between 2 and 16 GeV
 - precise estimation of the difference between high and low proton energies
- in all directions
 - precise estimation of backwards production of pions

The HARP Spectrometer: full acceptance is assured by a TPC and a forward spectrometer consisting of a dipole magnet with tracking chambers. Particle identification is defined by dE/dx, a threshold Cherenkoy counter, time of flight and an electron and muon veto.

BNL Target Exp. (E951)

Spokesperson K. McDonald, Project Manager H. Kirk

Original Full Proposal

Phase 1: Beam on Targets

Run in April at AGS

Target Box

Solid Target Strain measurements with beam:

Qualitative agreement with simulations

CERN Hg Trough in beam

First Shot (cup full)

Faster camera, but not full

Not to scale

Measured Velocity = 50 m/sec

BNL Jet in beam

1-cm-diameter Hg jet in 2e12 protons

- Jet vel 2.5 m/sec, 1 cm dia.
- Beam:
 - $-2-4 \ 10^{12} \ ppp \ 16 \ 10^{12}$
 - $-0.7 \times 1.9 \text{ mm } 1.5 \times 1.5$
 - -1/6 1/3 energy density of 1 MW
- Delay 40 micro sec: bubble chamber
- Droplets 50 m/sec \rightarrow 10 m/sec : air
- No disturbance upstream

. CERN Hg Jet in lab

At CERN and BNL: jet is turbulent and uneven due to high Reynolds Number

It will get worse (CERN jet small, BNL jet slow, $\mathbf{R} \propto rv$)

Need nozzle design Magnetic Field may stabilize:

Jet entering B at Grenoble

1 cm diam. jet, v = 4.6 m/s, B = 0 T; v = 4.0 m/s, B = 13 T:

⇒ Damping of surface tension waves (Rayleigh instability).

CERN RF

88 MHz Cavity will be modified and coils added

Will it get 4 MV/m, as specified in CERN design ?

SC Cavity work at Cornell/CERN

Cavity under construction at CERN Will it get 16 MV/m?

Q scaled from LHC:

Test pit under construction at Cornell

RF at LBNL & Fermi

Fermi Lab G RF Tests

Gradient and dark current?, but at 800 MHz (for collider)

Cave

SC Solenoid

805 MHz Open-Cell Prototype

LBNL Be Foil tests with heater

Measured temp. threshold

Low-power test model

Testing has validated expected foil behavior:

Closed 805 MHz Structure

LBNL 805 MHz high power test cavity

Parts being brazed at Alphabraze

Parts being made at U.Miss.

Foils will be tested at high field

H₂ Absorber R&D at IIT & Fermi

New Area with Linac Beam for H₂ Absorbers & 200 MHz RF

Under Construction

Triumph MUSCAT

Study of muon scattering

Muon International Cooling Experiment (MICE)

Original CERN 88 MHz Design

Use low intensity muon beam

Measure directions and momenta of tracks before and after cooling section.

Form "beam" off line and study changes in emittance.

Using Study 2 200 MHz

Geometry A: 1.5 cells

•

Geometry B: 2.5 cells

Prefered because more like real lattice, but more expensive and harder to match into measurement solenoids.

Geom A 1/2 + 1 + 1/2 abs

Input used

particles		5000
uncorrelated momentum	${f MeV}$	200
Transverse emittance	π mm	9
Longitudinal emittance	π mm	11
uncorrelated dp/p	%	7
rms ct	cm	9
mom-amp ² correlation	${ m GeV/c}$.34
ct-angmom correlation	\mathbf{GeV}^{-1}	-35
${ m ct}$ -dp/p correlation	m	1.14

Summary of ICOOL simulation

	all tracks	ending tracks	\mathbf{true}^*	
Transverse emittance change	-13	-7.7	-9.2	%
Longitudinal emittance change	+7.7	+7.6	+4.0	%
6-D emittance change	-18.9	8.9	-13.9	%

* From continuous cooling, i.e. ideal input matching

Run Options

	$E_1 = E_2$?	${f n}_{ m absorbers}$	rf grad	rf phase	$\Delta\epsilon_{\perp}$	rf Power	simulated
			MV/m	\mathbf{deg}	%	MW	
a	\mathbf{yes}	1/2 + 1 + 1/2	15.5	30	8	32.3	yes
b	no	1 + 1 + 1	15.5	30	12	32.3	
c	yes	1/2 + 1 + 1/2	8.7	90	2	10.3	yes
d	no	1 + 1 + 1	8.7	90	12	10.3	
e	yes	0+1+0	7.7	30	4	8.1	yes
f	no	1 + 0 + 1	7.7	30	8	8.1	
g	yes	0+1+0	4.4	90	4	2.6	
h	no	1 + 0 + 1	4.4	90	8	2.6	
i	no	0+1+0	0	0	4	0	
j	no	1+1+1	0	0	12	0	

Start of Engineering

This is geometry A, but B is still prefered

RF Cavity (LBNL)

Liquid H2 Absorber (ITT)

Dark Current Observed

Assuming X-Rays \propto dark current This is several orders of magnitude too high for the detectors.

Investigate polishing, cleaning etc Use lower gradients Use more X-Ray resistent detector.

Detector in Solenoid.

Planes of scintilating fibers

Resolutions

$$\frac{\delta(p_{\perp})}{p_z}) = 0.3 \ 10^{-2}$$

$$\frac{\delta(p_{\perp})}{p_z}$$
) = 0.3 10^{-2} $\frac{\delta(p_{\parallel})}{\langle p \rangle}$) = 0.25 10^{-2}

If systematics = 10% of sigma, rms θ =0.1 rad, rms dp/p=7%, then, neglecting errors in dx and dt:

$$\delta(\epsilon_{x,y}) \approx 0.3\%$$
 $\delta(\epsilon_z) \approx 0.4\%$

c.f. expected transverse cooling 8-12 %, and longitudinal heating $\approx 4\%$. So the contribution from these will be less than 10% of the expected signals.

In addition, I estimate:

$$\delta(x, y) \approx 0.2 \text{(mm)}$$
 $\delta(t) \approx 100 (psec)$

Again, if systematics = 10% of sigma, $\sigma(x, y) = 10$ cm, $\sigma(t) = 400$ (psec), then from these:

$$\delta(\epsilon_{x,y}) \approx 0.02\%$$
 $\delta(\epsilon_z) \approx 2.5\%$

Again, c.f. expected transverse cooling 8-12 %, and longitudinal heating $\approx 4\%$.

So the contribution from position measurement is negligible, but that from the time is over 50% of the expected signal! i.e. we can measure 5D cooling to better than 10%, but 6D cooling only if the systematcs are much better than 10% of the timing scatter.

${f LOI}$ sent to ${f PSI}$, which has suitable beam

Beam & Layout at PSI

Figure IV-5.3 Possible implantation of the MICE experiment in the PSI experimental hall.

LOI also sent to RAL, but RAL beam is not yet for muons, so needs to be modified

Beam at RAL

Figure IV-5-5 the existing High Energy Physics beamline at ISIS (RAL).

COSTING OF $\mu\text{--ICE}$

,			cost for:					
Item	fixed	Add.	1 cavity	1 cavity	2 cavities	2 cavities	2 cavities	
	cost	Unit cost				8 MW	32 MW	
COOLING CELL								
RF Cavities								
4 cell cavity 200 MHz	0.3	0.5	0.8	0.8	1.1	1.1	1.1	
RF POWER:								
CERN-refurbish		0.2	0.2	0.2	0.2	0.2	0.2	
FNAL-refurbish (?)		0.2	0	0.2		0.2	0.2	
NEW diacron tubes	1	1.2	0	0	0	0	8.2	
MAGNETS								
focus pair	1	1	3	3	4	4	4	
coupling loop	1	1	2	2	3	3	3	
Liquid H2 absorbers	0.5	0.1	0.2	0.2	0.3	0.3	0.3	
H2 safety	2		2	2	2	2	2	
Total for cooling cell			8.2	8.4	10.6	10.8	19	
US \$ (US costing)								
cooling DE (On crest)			11.5MV	16 MV	16 MV	23 MV	46 MV	
Approx. $\Delta \varepsilon / \varepsilon$ (%)			5%	7%	7%	10%	20%	
DIAGNOSTICS								
detector solenoids		1	2	2	2	2	2	
Detectors		2	2	2	2	2	2	
Total diagnostics			4	4	4	4	4	
_								
Subtotal	4		12.2	12.4	14.6	14.8	23	
infrastr., extras(20%)								
TOTAL	4.8		14.6	14.9	17.5	17.8	27.6	
· - · · · -					-			